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Note 

Conformal Mappings for Internal Viscous Flow Problems 

Isolated occlusions in a straight channel or pipe can be described analytically in a fashion 
that allows efficient, accurate computation of nonlinear flow fields through conformal 
transformations. 

Many incompressible viscous flow problems are approached theoretically via 
numerical simulation because the governing Navier-Stokes equation is nonlinear. For 
curved two-dimensional flow boundaries that do not correspond to well-known 
orthogonal curvilinear coordinate systems, it is often convenient to transform the 
problem to another rectangular computation plane via a one-to-one mapping [l-12]. 
Analytic conformal mappings have been relatively rare because in general the 
relevant mapping expression is. unknown. However, the advantages of such transfor- 
mations suggest seeking appropriate analytic formulas to match the given boundaries. 

Our experience with such mapping functions for internal viscous flow problems has 
been very good [ 10, 1 I], as has been found for external boundary layer problems by 
Ghia and Davis [12]. Our interest in internal flow problems is due to the disease 
atherosclerosis, in which arteries are occluded by the growth of atheromatous plaque, 
often to the point of complete closure. To find the role of fluid mechanics in the 
continual development of the plaque, we were led to the idealized model of a single 
smooth axisymmetric occlusion in a long straight pipe. It was necessary to charac- 
terize the wall boundary, i.e., the “stenosis” shape, in order to calculate the 
corresponding periodic flow field. We sought simple conformal mappings (some 
described below), to deline the shape in a realistic fashion that provided a convenient 
range of shape variations. The computed flow fields are described elsewhere, but the 
technique was so successful it is urged for other internal flow problems. 

A brief discussion presents advantages of a conformal mapping technique followed 
by a list of disadvantages of other mappings. It describes a comparison study of 
steady flow solutions for a particular stenosis shape and fixed flow Reynolds number, 
which illustrates the preceding sections. 
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ARTERIAL Occ~usro~s 

1. Mapping the Boundary 

Our internal problem geometry was an isolated symmetric occlusion (~a~~~~~~~) 
in a straight channel (or tube, in the axisymmetric version). The most obvious 
parameters of the occlusion are its relative depth S (often expressed as throat ratio 
dR) and its relative half-width ,I (point from the throat where the local d~s~re~a~~~ is 
half the total). A satisfactory two-parameter conformal mapping is 

71 
[=u+iv=Az+3tanh-z, 

2 
z=x+iy((orxtir); 

u = Ax 4-B sin ~~(cosh RX + cos ny))‘, 

v = Ay + B sin ny(cosh 7cx + cos ny)-‘. 

This yields a double family with wall boundary y(x) = Vj [or Y(X) for ~~s~rn~et~~) 
with choice of B/A. Figure 1 shows a map for Eq. (I) with fixed A, B from the 
uniform computational mesh; any curve corresponding to v = vj can be used as a 
boundary contour. There are automatically more points in the throat region just 
where they are desired. Figure 2 illustrates the half-width variation for fixed throat 
ratio = 0.5 as a function of vj/A. Using this and similar graphs at other throat ratios 
we can get the correct coefficients of the conformal mapping of Eq, (I) to match the 
depth and half-width of the actual arterial stenosis artificially induced in a dog as 
part of our research project. This mapping function re resents a portion of u~~f~~rn 
inviscid flow through a screen of doublets placed in equidistant array normal to the 
flow. 

Another double continuum of occlusion shapes sharper at the throat is given by 

c=Az+B siW@)z 
cosh*(71/2) z 42) 

for different screen singularities from Eq. (1). It is possible to get other oc~l~si~~ 
shapes from the higher-order singularities obtained by differentiating the “dist~rba~~~ 

FIG. 1. Coordinate mesh for conformal stenoses, Eq. (1). 
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FIG. 2. Variation of relative half-width for a fixed throat ratio (0.50) with Eq. (1) mapping function. 

function,” the second term in Eq. (1) or (2). The occlusion shapes given by Eqs. (1) 
and (2) have fore-and-aft symmetry but a mapping with a single function without that 
property is given by 

71 
[=Az-Bsech’-z, 

2 (3) 

which is illustrated in Fig. 3. This might represent an atherosclerotic occlusion 
followed by an aneurysm (post-stenotic dilatation). Other more complicated distur- 
bance expressions that have the right behavior at x = *too were also found. Because 
the conformal mapping function is linear, a number of analytic disturbance functions 
can be superposed. This suggests matching to a given occlusion shape in a least- 
squares sense by fitting coefficients to a singularity series, if closer matching is 
desired. If there is more than one occlusion, the singularity disturbance functions can 
be distributed at their locations. For instance, two equal narrowings located (2~2) 
apart can be imaged from 

i=Az+Btanh+(z+a)+Btanh+(z-a) (a real). (4) 

There is no limit to the array of wall shapes that can be represented analytically and 
that allow conformal transformations of the corresponding internal flow fields. 
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FIG. 3. Asymmetric wall shape for a constricted tube with mapping function, Eq. (3). 

2. Flow Equations 

Assuming a Newtonian incompressible fluid, the unsteady axisymmctric 
Navier-Stokes equation can be reduced to two coupled equations in Stokes stream- 
function w and vorticity magnitude R: 

where 

J(v, -Q> = acv/, .n) 
a(?-, x) ’ 

the reduced frequency fR = 27~i/(Q) and the inlet Reynolds number Re is 2z/p,fv. 
Here U is the space-average velocity in the inlet tube, yO is the inlet radius, is the 
kinematic viscosity of the fluid, T is the period of the pulsatile flow and (Re) is the 
time mean Nondimensional lengths r and x have been normalized by rO d r=ut 
where co = 274/T, The transformed equations corresponding to Eq. (I) are given in 
Ref. [13]. 

The assigned periodic waveform consists of a steady portion and a single harrn~~~c 
cos mt. The flow depends on amplitude E where the normalized boundary stream- 
function (flux) is 

l/(z) = 1 + & cos r. 14) 
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Viscous nonslip requires v(r) constant along the solid wall and @/an = 0, where n is 
the normal. Parallel inflow and outflow that satisfy wall nonslip and Eqs. (5,6) are 
specified as end conditions at locations far from the constriction. 

3. Solution 

The transformed vorticity equation (5b) was solved in finite-difference approx- 
imation by explicit Dufort-Frankel marching [ 131. A time step was computed by 
determining a at the new time level, followed by solving the linear system (5a), then 
followed by computation of the wall vorticity to complete the time step. Usually 
Eq. (5a) is solved by a conjugate gradient technique, but other more efficient methods 
have also been developed. Convergence is checked after each cycle at the instant of 
maximum flux. 

The computed pulsatile flow fields [10&l] for moderately constricted arteries 
depend on three dynamic parameters Cr,, Re, E) and will not be described here. A 
typical result is the cyclic behavior of the recirculation region that appears 
downstream of the throat. 

DISCUSSION 

1. Advantages of Analytic Conformal Mapping 

If the mapping is conformal it translates the normal and tangential velocity 
component boundary conditions in a natural way, generally allowing the viscous 
boundary condition to be met to the same order of approximation as the partial 
derivatives in the flow equation. The Laplacian operator (or any related second order 
elliptic operator) takes a simple form in the transformed plane without cross- 
derivative terms. Since all the mapping functional terms can be evaluated from 
analytic expressions there will be no errors introduced by the mapping. This does not 
mean that errors in the final approximate solution are not affected by the mapping, 
but if the transformed solution is exact, the mapping will not make it inexact. This 
seems to be reflected in no loss of numerical stability due to the mapping in time- 
dependent calculations. For arbitrarily shaped regions it is difficult to ascertain the 
“conformal module” to be matched in the mapped plane to ensure that physical 
corner points map correctly into the corner points of the computation plane [ 141, but 
this subtle constraint is automatically satisfied by the analytic expression [15-171. 

2. Disadvantage to Numerical Mappings 

There are many ways to do an approximate numerical mapping with or without 
conformality [l-9]. Nonconformal mappings sometime introduce trouble when the 
Jacobian goes to zero or even approaches it [5]. They also introduce cross-derivative 
terms into the transformed partial differential equations making them more 
cumbersome to program. So some workers have kept to conformal mappings [6-91. 
However they introduce numerical errors because the mapped functions in the 
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transformed equation are approximate. This tends to reduce numerical stability. To 
improve the stability lower-order convective approximations (e.g., upwind 
differencing) are sometimes used to secure the nonlinear solution. This, of course, 
increases the error of the approximate solution, particularly when there is a Local. 
recirculation region, where reverse flow requires backward d~~erenci~g~ If a finer 
mesh or packed grid calculation is deemed necessary, the numerical tra~sf~r~~t~~~ 
terms must be redone to the smaller scale. 

y restricting the inflow to be steady, our method yielded the steady solution with 
a recirc~latiQn region just aft of the throat [ 13 1. This same steady solution was also 
sought by a nonconformal numerical mapping but the system did not converge for 
the same time step, or even a much smaller one. The steady solution was ~bta~~e~~ 
however, by a direct iterative method with the numerical mapping and the resuhs 
compared favorably. On the other hand, an implicit marching scheme with the 
numerical mapping appeared to converge satisfactorily, but to a wrong answer. The 
erroneous convergence limit was traced to a subtle mistake In setting the vorticity 
(viscous) boundary condition on the solid surface and was res 

The above comparison tests were carried out for an inlet 
based on diameter and mean velocity of 100 [Re 3 (2Ur,/ 
conformal mappings on similar occlusions had convergence limited 
Another nonconformal mapping method showed significant discrepancies [5 1. 
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